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The mode mixing encountered in solving the boundary value problem
arising in studies of wave propagation in hot one-dimensional plasmas
is investigated. The wave differential equations, second order in ion
Larmor radius, are shown to contain close to the ion cyclotron
resonance an unwanted coupling mechanism, closely related te mode
conversion driven by the equilibrium gradients. Consequently, the
solution mixes with parasitic modes which carry power out of the
resonance zone. In the case of strong coupling, this may lead to a
generation of excess energy flux for complex valued coefficients of
the wave equations. The importance and effects of this phenomenon
are demonstrated in the special case of simulations of minority ion
cyclotron heating in tokamaks. It is shown that the mode mixing can be
avoided by adjusting the elements of the coefficient matrix of the wave
equations, which makes the second-order system amenable to the
prablermns with high minority concentration which is important for
studies of fusion physics. © 1994 Academic Press, Inc.

1. INTRODUCTION

The solution of wave propagation, absorption, and
coupling is an important branch of computational plasma
physics, especially because of its close connection with the
~heating of fusion plasmas. The problem consists of solving
the appropriate in-time Fourier-analyzed wave equations as
a boundary value problem in one, two, or even three dimen-
sions. Assuming that a constitutive relation for the plasma
has been derived, the equations are of the form

(92
VxVxExiw,qum—Fa-E, (1)
where E is the electric field vector in the plasma, o is the
angular frequency of the wave. j,,, stands for the externally
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applied currents and ¢ is the dielectric tensor of the medium.
In an inhomogeneous hot plasma ¢ is an integral operator.
To make the problem tractable we assume the plasma to be
sufficiently homogeneous so that the differential operator
formutation for the dielectric tensor can be used. From this
starting point, one can proceed for geometries having one or
two ignorable directions by Fourier-decomposing the peri-
odic spatial dimensions away and by making simplifying
assumptions about the dielectric properties of the medium
1]

Although the basic equation (1) looks rather simple at
first glance, its solution is known to be very cumbersome,
The reason lies in the fact that the corresponding dispersion
relation often yields more than one propagating mode. For-
tunately, in most cases the modes have vastly different
wavenumbers and can therefore be separated fairly easily.
However, for certain conditions the different wave branches
interact, e.g., at mode conversion layer or at steep gradients,
which complicates the problem. For wave propagation in a
plasma slab one is often interested in transmission, mode
conversion, and absorption coefficients. Hence, there is a
need to calculate how much power is transferred from one
branch to another. The power balance calculation requires
the decomposition of the wave field to all branches at
appropriate points, e.g., at the boundaries.

The ensuing system can be solved numerically with finite
difference (FD) methods [2] or with finite element (FEM)
techniques [3,4]. In one dimension both give accurate
results although with problems of their own concerning
computer time, memory requirements, or numerical pollu-
tion in the solution due to ill-posedness of the operator
V xV x [3]. For these reasons, solving the wave propaga-
tion problem in full 3D geometry is a difficult task due to the
natural restrictions of the method: memory space in FEM
and slowness of convergence in FD schemes. One concern is
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that the wave equation system is an approximative one,
depending on how the response of the plasma has been dealt
with. The absorption of the wave mode can be calculated
quantitatively only by using the hot plasma description of
the plasma. This means usually a development of the plasma
dielectric tensor to second order in the parameter k, r,,
where k, is the mode wave vector perpendicular to the
magnetic field and r; is the ton Larmor radius [6]. The
ensuing differential equations are commonly called finite
Larmor radius (FLR) equations.

The Larmor radius expanded equations suffer from
problems due to the fact that outside the mode conversicn
regions only the wavelength of the fast magnetosonic wave
remains usually long enough to satisfy the condition
k% r?< 1. For the commonly used second-order expansion
this will not only give rise to an incorrect dispersion relation
for the short wavelength modes but also to unphysical
effects like negative absorption. To overcome the failure of
the FLR equations, one may, e.g., use artificial damping [7]
in order to reduce the effect of the short wavelength modes
on the absorption, reflection, and transmission of the long
wavelength fast wave. Such methods are, however, cumber-
some to use and do not take into account the origins of the
problem: One should note that a general wave solution
using a correct development of the plasma response to
arbitrary order in k |, r, Jeads to a system of integrodifferen-
tial equations [9, 10]. Their solutions pose a challenging
computational and physical problem that has been
attempted to deal with only recently by Sauter and Vaclavik
(9, 11].

In this paper, we analyse some of the problems arising in
solving the second-order FLR equations in a situation
where they do not give the correct dispersion for all the
plasma modes. We start by considering simplified second-
order wave equations which have a similar resonance as the
complete equations. The analytical solution of the model
equations and their numerical analysis connects the present
subject to a broader context, beyond plasma physics. It is
shown how the mechanism of gradient conversion [127] can
lead to a coupling between the long and short wavelength
modes. This can occur also when the dispersion of the
propagating short wavelength mode is not described
correctly in the proximity of the resonance layer. This par-
ticular, unphysical case is an example of the more general
situation where the real part of the highest order coefficient
Re[ ] of the wave equations has a zero or resonance. In the
case of the FLR equations, this behaviour occurs for a
minority heating scenario in which the charge to mass ratio
of the minority ion species is not equal to that of the
majority ion species. Given a high enough minority concen-
tration, two zeros of Re[¢] can exist: one at the cyclotron
resonance layer and one on the high field side [13].

We show by analytical means how the strength of the
gradient conversion depends on the boundary conditions by

separating the field into the wave components at the
boundaries. The analytical results are then compared with
numerical calculations using a simplified wave equation
that is appropriate for the study of the creation of the short
wavelength mode from the process. These studies are com-
plemented by outlining what happens if a complete set of
wave equations is used in a slab geometry with comparable
plasma parameters. A further failure of the second-order
equations occurs at the description of absorption of the left-
handed field component. It not only gives the wrong
magnitude but also the wrong sign. To avoid the problem
with the left-handed component, which is enhanced at the
fundamental cyclotron resonance and becomes strongly
emphasized for large minority concentrations, we consider
means to modify the wave equations. By changing the
second-order corrections to the coefficients of the wave
equations such that the negative absorption vanishes we are
able to reduce the mode mixing significantly. With this easy-
to-implement approach, we are able to analyze the physics
of fast wave heating and mode conversion without the
problems stemming from the failure of the FLR expansion.

This paper is constructed in the following way. Section 2
presents the wave equations and the analytical theory,
together with evidence from a numerical solution of the
reduced wave equation. In Section 3 we continue with the
study of the full wave equations. The effect of mode mixing
on the energy balance and the relative mode amplitudes is
analysed. We discuss methods by which the dispersion can
be changed so as to reach correct results. Section 4 finishes
the paper by the conclusions.

2. PHYSICAL BACKGROUND

2.1. Negative Absorption

For homogeneous plasmas, the dielectric tensor has been
developed to all orders in the ion Larmor radius. For a
Maxwellian velocity distribution one has [6]

2

w,. b
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and Z denotes the complex-valued plasma dispersion func-
tion and summation extends over all particle species. v,
w,,, and £, are the thermal velocity /27T, /m,, plasma fre-
quency, and cyclotron frequency of the oth species (a=e,
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for electrons), respectively. T, is the temperature (in energy
units) of the ath species and m, is the corresponding mass.
n, and Z are the refractive index of the wave and the unit
vector, respectively, in the direction of the background
magnetic field. In considering the finite Larmor radius
effects on the wave absorption we need the perpendicular
components (i, j= x or y) of the matrix IT with respect to
the magnetic field. These are given by

n2

B.
—inA,(B,)

A (B.) ind,(B.)

2 3

%An(ﬁm)—zﬁ,/l;(ﬁm)

S

4)

where f, = &2 v%,/20% and 4,(8.) =1,(8.) exp(— ). I, is
the modified Bessel function of the nth order.

One problem which appears with the second-order
approximation in the Larmor radius over the wavelength is
that the energy absorption becomes negative, This is not
physically relevant and causes problems in the numerical
codes. The problem can be illustrated by studying wave
absorption in a homogeneous plasma. With the dielectric
tensor given in Eq.(2), the absorbed power density is
obtained from p=¢,0 Im{(E* -¢-E), By transforming the
coordinates so that the base vectors coincide with the eigen-
vectors &; of the anti-Hermitian part of the tensor ¢ we have

= 50(“’;1;;/'5”) a0, IMLZ(a,, J (1 VE\2 + 42 VEal®) (5)

where u;, i=1, 2, are the eigenvalues and E=E, &, + E,é,.
In Fig. 1, we show the eigenvalues y; as a function of §,
corresponding to the fundamental cyclotron resonance of
the species @, i.e., by considering only the term n=1 in
Eq. (2). Both eigenvalues are positive which means that the
absorption is positive, too. When expanding II to second
order in the ion Larmor radius, i.e., to first order in §,, one
obtains

18,  #(1—28,)
2 2

M0l aiapy 1-ss | ©
-2 5

The eigenvalues to T are given by fi, ,=(1—-28,)/2+
L/ 1—4B,+ 582 and are plotted in Fig. 1. For small §, the

corresponding eigenvectors coincide with the rotating elec-
tric field components E, = E, £ iE,. As we can seg, one of
the eigenvalues becomes negative. Again, at low values of
B, i is small as compared to ji,. What makes things worse
is that near the cyclotron resonance we have, except for
small minority concentrations of the resonating ion species,
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FIG. 1. The eigenvalues of the tensors in Egs. (4) (solid curve) and (6)
{dashed curve) as a function of §,.

thai |E_| ¥ |E,| for the fast wave while the eigenvector
corresponding to ji, coincides with E_. Therefore, this
problem becomes, in principle, sever¢ for heating at the
fundamental ion cyclotron frequency with large minority
concentrations for which |E_|/{E | becomes large. In prac-
tice the sign of the absorption is determined by the total
electric field, which may consist of other modes, in addition
to a single fast wave, leading to 2 much more complicated
situation.

For n=2, the second-order expansion leads to positive
eigenvalues and there is formally no problem except that
ensuing from the inaccuracy of the second-order expansion.
This, however, is valid only for small §,. Thus, only the
magnetosonic wave can be properly described by the code
and the short wavelength modes only near the mode conver-
sion layers, close 10 which £, is locally small. Therefore, the
absorption profiles based on the damping of the ion
Bernstein wave (IBW) or kinetic Alfvén wave may not be
accurate.

2.2. Wave Equations

The wave equations to second order in the ion Larmor
radius in an inhomogeneous plasma can be found in Refs.
[14, 15], where their derivation is also given. Here, neglect-
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ing magnetic shear and toroidicity, we writc the wave
equations for n, =0 in a reduced form,

—[(o2—0) ELT +i[(8,~26,) E}] +{(nZ—S) E,
+iDE,+in,E,=0 (7)

—i[(6,—28,) E\] — (02— 306, +24,) E, ] —iDE, - E/
+(n2=SYE,+n(EE,) =0 (8)
—n,80E, +in,E,— E! ~ PE,=0, (9)

where E,, E,, and E, denote the electric field components
perpendicular to the magnetic field (x, y} and in the direc-
tion of it (z), respectively. The prime denotes the derivative
with respect to x; n, and n, are the corresponding refractive
indices of the radiation. A plasma slab inhomogeneous in
the radial direction (x) is assumed. Equations (7)}-(9)
include finite temperature and finite electron inertia effects
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and allow arbitrary profiles for the equilibrium parameters.
A number of unimportant kinetic corrections as well as
terms proportional to second derivatives of the coefficients
have been left out of the equations. In their present form, the
essential features of the electrostatic wave excitation by the
equilibrium gradients and various resonances can be
described [ 16, 17].
The dielectric tensor elements are given by

S=1+Y x,[Z(a;)+ Z(a )] (10)
i wz
D= =Y x,[Z(a,)—Z(a_,)] - == (11)
i Q,w
wz
P=1- ( w’z) a5 Z'(a5,) (12)
Un=)"—n+in (13)
200000
100000
D 0
—100000
—200000 |
-300000 1 ]
0.1 02
Tcfw

0.7 -

01 02

zc/w

FIG. 2. The behaviour of (a} S, (b) D, and (¢) ¢ around the cyclotron resonance as a function of xc/w. The cyclotron resonance layer (w =2p,) is
located at x=0085m. A tritium-deuterium plasma with 50% relative concentrations. The magnetic field (B,) at the resonance is 3T,
@=14325%10°s~! corresponding to the cyclotron frequency £, of deuterium at the resonance, n,=2, n,=0,n,=5x 10" m~* and T=5keV.
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On=4_n~4, (14)
j‘nz _inrfz(am') (15)
Lo=2 11l ag, Z" (), (16)
where
wie
-
K= S (17)

and the summation extends over all ion species. All the
lengths are normalised to ¢/m; r; denotes the ion Larmor
radius (v7:/v/2 c)w/R,).

The kinetic effects are introduced via the terms propor-
tional to ,,, d,, 4,, and £, while the finite electron inertia
effects are equivalent to including E, in the equations, i.e.,
having finite P. Equations (7)-(9) reduce to

PO kiU )
” + - — 18
g S—n? {
in the limit |P| = w0 and s, J,, 4,, £, — 0 as can be seen by
putting £,=0and o, §,, 4., £, =0 and by solving Eq. (7)
for E_ and substituting it into Eq. (8).

2.3. Wave Branches

Equations (7)-(9) support three different modes which in
typical plasma applications in the ion cyclotron range of fre-
quencies have greatly differing wavenumbers, correspond-
ing to a fast magnetosonic wave, a slow wave, and an ion
Bernstein wave or a kinetic Alfvén wave. Consequently, they
propagate independently and are damped whenever |a,|
approaches or becomes comparable to unity for ions or
electrons, in which case Z{a,) has a nonzero complex part
(for nonzero n.). Around the regions, where S —n? has a
zero, the wavenumbers of two different modes coalesce and
the corresponding modes become coupled [8]. In this case,
the power flux of the magnetosonic wave is converted to
that the electrostatic waves, or vice versa. The conversion
may also take place with steep equilibrium gradients [19]
when the inverse gradient lengths approach the value of the
electrostatic wave wavenumber. It has been shown that
these mechanisms can be well described by a local analysis
[16, 12].

In the present study, we concentrate on the wave
behaviour near the zeros or singularities of Re[s], where
Re denotes the real part of the expression inside the brackets
and ¢ =0,— g,. These special points appear, e.g., at the
zeros of a;;, i.e., at the cyclotron harmonic resonances w =
JjQ,;j=+1, +2. For n_=0, ¢ has a singularity at w = 2,,
while for n, # 0, Re[ ¢ ] has a zero there. In a multi-ion com-
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FIG. 3. The wavenumbers of the modes around the resonance
calculated from Egs. (7)+(8). The resonance layer is at x=0085m. The
real parts have been drawn with solid lines, the imaginary parts with dotted
ones. Solid circles denote the slow wave root, open ones the ion Bernstein
root and open squares the fast wave root. The real part of the slow wave
root is very small. The sign of the IBW root has been chosen so that
Refr, )>0.

ponent plasma, ¢ may also have a zero between two
separate cyclotron resonances. Figure 2 shows ¢, S, and D
as a function of x around the cyclotron resonance for typical
tokamak plasma parameters. We have taken the constant
density and temperature while the magnetic field is assumed
to vary as B, /(1 — x/R,), where R, denotes the major radius
at the cyclotron resonance. The plasma is composed of
deuterium and tritium with equal proportions. At the spe-
cial points mentioned above the finite Larmor radius expan-
sion is not valid. While the magnetosonic wave propagation
is well described over these points, Egs. (7}-(9) fail in
describing the short wavelength kinetic mode. Figure 3
shows the wavenumbers of the three modes as a function of
x around the cyclotron resonance as deduced from Eqgs.
(7}-(9). The parameters are the same as in Fig. 2. According
to the exact dispersion relation [8], the shortest wavelength
mode propagates only on the low field side of the cyclotron
resonance in the depicted region, while Eqgs. (7)}-(9) have a
propagating root, corresponding to the ion Bernstein wave
branch, on both sides of the resonance. As it will be shown
later, the fact that the ion Bernstein wave propagates with
oppositely directed energy fluxes on both sides of the
resonance leads to ill-defined problems in a finite plasma.

2.4. Simplified Examples

To show that the special points of ¢ can be a serious
source of unwanted modes, we discuss a simplified case of
Eqgs. (7)~(9) with n,=0. Consider the model profiles
o6=1/x, S=x/x, and D= —x(1/x+a), which roughly
simulate the true behaviour of the dielectric tensor elements
around the cyclotron resonance with n,=0. In the case of
large x, the short wavelength mode is described by Eq. (7),
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and E, can be assumed to be a given constant around the
resonance (the latter approximation has been found useful
for analysing mode conversion at S=n? resonances; its
validity in the present case is usually not as good ). Note that
this assumption is equivalent to considering the electrostatic
mede being driven by a constant amplitude fast wave. From

Eq. (7), we find that

XxE"— E'+ kxE= —ixE ox* = Fx?, (19)

where we have used the transformation E,— E—iE,.
Equation (19) has a solution,

E=AxJ (/% x) + BxY,(\/x x)
+§Fx[¥.(ﬁx) (EANCEETS

~I(ex) [ Virx)x dx],

(20)

where J, and Y, denote the first-order Bessel functions and
the constants 4 and B are determined by the boundary con-
ditions. To determine the unknown coefficients 4 and B, the
outward radiating boundary conditions are placed far away
from the resonance, ic.,

E— C, x[J (/K x)+i¥,(/x x)] + Fx/x;
E~ C_x[Jy(/x x}+ 1Y {(/x x)] + Fxfic;

X = 00

X— —o,
(21)

where the unknowns C, and C_ determine the amplitudes
of the outward emanating short wavelength modes. Note
that in our applications Im[cEXE ] corresponds to the
physical energy flux of the short wavelength mode in the
context of Eq. (19). Hence, the mode is a forward mode
(venv, > 0) for positive x and a backward wave (v,,v, <0)
for negative x. Here v, and v, are the phase velocity and
group velocity of the mode, respectively. This yields the
correct choice of the signs in front of ¥, in the boundary
conditions in Eq. (21). Applying these conditions for the
solution in Eq. {20), we find the constraint

i[A —g—% j:o Yoln/% x) dx]

=B+ 2 [T (e d

2/x

but 4 and B remain otherwise undetermined. This example
shows how such boundary conditions as in Eq. (21} can

(22)

make the problem ill-defined in the case where the short
wavelength mode propagates on both sides of the resonance
with opposite power flux directions. An analogous case
is the second-order differential equation E” + xE = 0 with
a constant x and with the boundary conditions
E o exp(i \/; x)} on both left and right boundaries.
Although the problem presented above could be anticipated
to be difficult to handle numerically, this is usuaily not the
case. With a bounded calculation region and with boundary
conditions not identical to the infinite-case solution, 4 and
B can always be determined for the solution in Eq. (20).

As another example we take the model profiles
¢=ax+ip, §=ka, and D= — k(o + a). These simulate the
behaviour of the dielectric tensor elements around the
resonance for n, # 0. We take g, p, x, and « as constants and
assume that S—n’~ S and E, =0 to simplify the analysis.
As in the previous example, E, is assumed to be constant,
and we find from Eq. (7) that

[lax+ip) E'Y + k(ax+ip) E= —ikaE, = Fa* (23)

after the transformation E, — —JE, + E. Equation (23) has
the solution

E=AJo(\/s 2)+ BY (/s 2)
+§F[Y0(ﬁz) [ (/5 2)
- JO(\/; z) r Yo(\/g z) dz:l,

(24)

where J, and Y, denote the Bessel functions of order zero,
z=ax+ip, and s=x/a’. Again, the outward radiating
boundary conditions at infinity leave 4 and B undeter-
mined, but for a bounded calculation region they can be
determined. To show this, we assume the boundaries at
x = + L and set the conditions

E=—iaE [p+C,

(25}

E'=iJkC,

at x=L, and
E=—iaE, [g+C_

w14 (26)

E=i/xC_
at x = — L. Here we have used the notations p = aL + ip and
g= —al +ip,and C and C_ are the unknown amplitudes

of the emanating short wavelength modes. The latter are
assumed to have a dependence exp(i \/E x} at the bound-
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aries. By applying these conditions to the solution in
Eq. (24), we find that

Aqy+ =22 0, [ 1520
—q, j” Yol/5 2) dz}

> [ NFANCEP®

-0 ¥ roras )

where ¢, = iJo(\/s )= Ji(/5 P g2=1Yo( /5 p) -
Yo(y/s p) and with the same definitions for g, and g,,
respectively, but with ¢ substituted for p. The prime denotes
here the derivation with respect to the argument of the
Bessel function.

From Eqs. (27), A and B can be determined algebraically,
and C, and C_ can then be obtained from Eqs. (25) and
(26). Figure 4 shows E’(x) calculated numerically from
Eg. (23) with a finite element discretization and using the
boundary conditions shown in Egs. {25) and (26). We have
taken a=30, L=0.025 k=2300,000, «=0.001, p=001,
and E,=1. The resuit shows a short wavelength mode
which emanates from x =0 towards both boundaries. C,
and C_ are found to be complex conjugates, and
€ = —0.0055—70.0132. The result agrees accurately with
the analytical prediction, thus proving that the parasitic
coupling is not of numerical origin, but that it is a conse-
quence of the particular boundary conditions at x= + L.
and of the equilibrium gradients of g, S, and D.

We note that with =0, C, = C_ =0 according to the
analytical result. This fact, as well as the proportionality of
C, and C_ to « and E, is accurately reproduced by the
numerical code. As we have stressed earlier, Egs. (7)-(9) do

(27)

akE,
Agy+ Bg,= p
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FIG. 4. E'(x) calculated from Eq. (23) for model profiles of S, D, and
o. The boundary conditions are given by Eqs. (25) and (26): a=30,
L=0023, x=300,000, =001, p =0001,and £, =1.

not describe the short wavelength mode correctly around
the cyclotron resonance or zeros of o. This frees us from dis-
cussing the physical origin of the coupling. To understand
its mathematical origin more thoroughly we write the
energy conservation law from Eq. (7) with », small and
constant E, as
I'+0=0, (28)

where I =Im[cE XE"] denotes the energy flux of the short
wavelength mode and @ =Im[S] |E,|*—Im[iDEXE,] —
Im[¢] |E.|? includes the dissipation and a coupling term
between E, and E,. We note that the imaginary parts of §
and o are always positive from Egs. (10) and (13). Hence,
the magnitude of ¢ can affect the sign of Q. That Q can be
negative is obviousty an artifact of the finite Larmor radius
expansion of the wave equations, discussed in more detail in
Sectton 2.1 and should not appear in the precise theory.
Note that the term proportional to Im[s] gives a non-
vanishing contribution also in our example ¢ = 1/x when
the Landau integration over the resonance is performed. It
is important to note that the coupling term which is propor-
tional to D actually dominates with the parameters in our
model examples. This means that we may have parasitic
modes even for real coefficients in Eq. (23) (p =0) or with
other types of boundary conditions which do not
correspond to outward radiation of the parasitic modes.
This was indeed obtained in our numerical solutions of
Eq. (23) for p=0and for £'= —i \/; C_ instead of E'=
i \/E C _ in the boundary conditions equation (26), and it is
evident from our analytical theory. With p =0 the con-
verted energy flux, ie, the change in the energy flux of the
short wavelength mode, can be simply calculated from the
integral § Im[iDE *E, ] over the conversion region.

In the complete system of Eqs. (7)—(9), the energy conser-
vation law Eq. (28) can be written with the definitions

I=Im[E}cE,—iE}SE,+iE* 0E. + E*¢'E)]
+Re[EXB,— E*B,]—Im[n £ E*E,] (29)
Q=Im[S1(E* + |E,|>) ~ Im[D] Im[E} E,~ EXE,]
+Im[P] |E.\* —n. Im[£,] Im[EXB,]
—Im[o] |EL?+Im[8] Im[E} E,— E,E*']

—Im[a'] |E,I%, (30)

where B,= —iE’, and B,=n_E, +iE, and we have §=
0,—28, and ¢'=21,+06,—~30,. We find that the total
energy flux I remains constant if the dielectric coefficients
are real and do not have resonances. It should be remem-
bered nevertheless that conversion to short wavelength

modes still exists when equilibrium gradients are present, in
which case the increase in the short wavelength wave power
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flux equals the loss in the power flux of the magnetosonic
wave if I’ = (). The phenomenon of the opposite signs of the
terms proportional to the imaginary parts of ¢ and § in
Eq. (28) can be seen also in the full conservation law, as
noted in Ref. [14]. As will be shown in our numerical exam-
ples in Section 3, the term proportionai to Im[¢] can in
some cases dominate the damping terms around the
cyclotron resonance, which means that the total energy flux
increases, demonstrating the unphysical nature of that term.

2.5. The Boundary Conditions

Before turning our attention to the solutions of the com-
plete wave equations (2}-(4} we have to discuss the sen-
sitivity of the results to the details of the boundary condi-
tions. It has been shown [3] that Eqs. (7}(%) can be solved
by finite elements. Depending on whether one studies the
coupling between the antenna and the plasma or the
absorption, transmission, reflection, and conversion one is
resorted to different boundary conditions. For the anten-
na—plasma coupling calculations the global boundary con-
ditions, where the boundaries are set outside the plasma at
the tokamak chamber walls, are appropriate. Alternatively,
one can solve the equations with local boundaries placed
inside the plasma using the outward radiating conditions,
which makes it possible to evaluate the scattering coef-
ficients. The goodness of the latter conditions crucially
depends on the approximations used to describe the
behaviour of the various wave branches on the boundaries
lying in the inhomogeneous plasma.

2.5.1. Wavemode Representation at the Endpoints

To study the absorption and scattering of the waves
around the resonances, we apply the outward radiating
conditions and decompose the total wave field E at the
boundaries into three wave branches. The wave field at the
endpoints is then described by

E=tE+t E, +1,E +1, E,_

+1zEp+tp Ep_ (31)

dE
F in tE+ing 1, Ec +tin v E+in,, 7, E;

(32)

+ingtgEg+ing 15 Ep

where E,=E X+ E, y+E Zfori=f f_,s s_, B, and
B_ denote the polarization vectors of the rightgoing fast
wave, leftgoing fast wave, rightgoing siow wave, leftgoing
slow wave, rightgoing ion Bernstein wave, and leftgoing ion
Bernstein wave, respectively. 1, denotes the amplitude of the
corresponding wave branch and n,; is the x-component of
the refractive index of that branch as calculated at the
boundary. The ampiitudes of n,, are obtained most

accurately by solving the full sixth-order WK B-limit disper-
sion relation from Egs. (7) to (9) numerically. The assign-
ment of the different n,, to the modes is done according to
the direction of energy flow so that the energy flux of the
mode points outwards for outgoing and inwards for ingoing
waves. If the n2, from the root finding is negative, indicating
an evanescent mode and zero energy flux, we have
demanded that the mode amplitude decays. In this represen-
tation there are 12 unknown z,’s. Integration of the ordinary
differential system (7)}-(9) provides six relations between
these unknowns. Six additional constraints must be
provided in the form of boundary conditions.

’

2.5.2. Boundary Conditions on the Short Wavelength Waves

For the short wavelength modes (i=s, s_, B, B_), n
and the polarization components E, cant be determined from
the WKB limit of Eqs. {7)-(9) [20]. These modes are
usually damped in the plasma, Depending on the problem
the short wavemodes may either be reflected at the bound-
ary, propagating outward, or only propagating inward. The
parallel wavenumber of the short wavelength mode is
usually up- or downshifted in a toroidai geometry, resulting
in strong damping when k, becomes large. This effect can-
not be modelled in a plane geometry. There the damping of
the short wavelength modes can be weak., To avoid this
problem we assume only outgoing short wavelength modes.
Our conditions impose t,=175=0 at the left endpoint at
x=0and 1, =1, =0 at the right endpoint at x= L.

2.5.3. Boundary Conditions on the Fast Wave

We study the case where the incident wave comes from
the low field side of the tokamak and propagates to the
right. Because of this, we set 7,=1 at the left boundary at
x =0. At the right boundary, 1, gives the amplitude of the
fast wave component reflected from the high field side out-
side of the calculation region and has to be determined as a
function of 7,defined at the right boundary. In the following
we take 7, =0 to simplify the analysis.

Because of the long wavelength of the fast wave branch
and possible steep equilibrium gradients, n,,and n,, at the
endpoints cannot always be well estimated by the WKB
approximation. Instead they can be calculated with the help
of the Airy function solutions F ,(z)= Ai(z} + iBi(z} of the
wave equation around the endpoint [8]. The right going
and left going waves are given by + and —, respectively.
Ai(z) and Bi(z) are the solutions to the Airy equation

wr—2E,,=0 with z=—KJ/G+ G (x—x,). K, is
defined by K? = [(S —n2)? — D*]/($ —n?) at the end point
at x=x, according to K*=K}—G(x—x,) with G=
—d{K?(x,))/dx. The solutions quoted above for F_ and F_
are valid provided K3>0and G>0.If K;<0and G >0 we
take F_(z)= Ai(z) for the right evanescent wave and
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F_{z)= Bi(z) for the left evanescent wave. If G < 0 the solu-
tions for right/left going waves should be interchanged. We
then obtain in,, = (F', /F, ) G'*and in,, =(F_/F_) G
In the following, we approximate n_r_f———\/K_ﬁ and n,, =
~JVK§ lor ng=i/—K} and n, =—i./—K], if
K}<0) which apply in the weak gradient limit. The dif-
ference between these two conditions is only a matter of
definition of n, cand n,, .

The polarisations E;and E, of the fast wave branches are
assessed from Eqgs. (7)}-(9) by simply making the substitu-
tions d/dx — insor in,,_in the equations.

2.54. Boundary Conditions on E and dE/dx

Finally, by eliminating the three remaining unknown t,’s
from Egs. (31)-(32) at each endpoint we find the boundary
conditions on E and dE/dx. The boundary conditions as
described above have been chosen in order to be able to
separate the wave field into a kinetic wave, a slow wave, and
an incoming fast wave and a reflected fast wave at the
endpoints. However, they are not exact due to the equi-
librium gradients.

It is expected that the boundary conditions can be made
more accurate if they are set at plasma regions with weak
equilibrium gradients, In our examples in the previous sec-
tion, the boundaries were placed at the steep gradient
region. To demonstrate that the parasitic modes are excited,
even when the boundary conditions are made to accurately
match the outgoing plasma eigenmodes, we consider the
model profiles

o =sin(nx/2L) + ipge =7, —Lg<x<L
o= —1+ipge 0¥/, ~SLiA<x<—L (33)
o =1+ ipge= 2L, L<x<5L/4,

S=«o and D= —«(o +«). We assume that n, =0, E, =1,

100
50
-50
-100 ] .
-0.025 .000 0.025
X

FIG. 5. E’(x) calculated from Eq.(7) for the model profiles of o, S,
and D (see Eq.(33), and the text thereafter). The parameters are n, =0,
E, =1, x=300,000, p,=0.01, a=0.001, and L =0.02.

x = 300,000, p, = 0.01,a=0.001, and L = (.02, and show E,
calculated from Eq. (7) in Fig. 5. In this case, the dielectric
tensor elements and their derivatives are continuous. The
boundaries are placed at x= +5L/4, where the boundary
conditions are E, = —iDE,/S+ C,and E =i \/i; C, and
almost exactly match the cutgoing plasma cigenmodes. In
this case €, and C_ again are complex conjugates and
C, = —0.00187 — i0.00247. By comparing the result with
that in Fig. 4 we sec an approximately fivefold reduction in
the amplitude of the parasitic mode in the present case. The
presence of the parasitic mode is obtained also for the
undamped case p,=0, where the boundary conditions
exactly match the outgoing plasma modes and where C | =
—0.0026 — i0.001, according to our calculations. Hence, we
have proved that the short wavelength mode excitation can
arise from the sole gradient effect in a finite interaction
region and can exist even for accurately matched boundary
conditions. The modes are parasitic if their origin lies in the
failure of the FLR expansion leading to the nonphysical
equilibrium gradients of the dielectric tensor elements or to
the positive imaginary part of ¢ around the cyclotron
resonances. We expect that this problem is not suppressed
with the global boundary conditions discussed in the
Introduction.

3. THE NUMERICAL RESULTS

Solving Eqgs. (7}(9) with a cubic finite element method
similar as in [3, 20] and using the above-mentioned bound-
ary conditions we are able to calculate the conversion,
reflection, and transmission coeflicients for an incoming fast
wave with sufficient accuracy and with reasonable comput-
ing time for routine runs. The energy flux I, of the ith mode
is calculated from Eq. (29) for each mode using the mode
amplitudes 7,. We have |R|*= — I, {0)/I_/(0) for the fast
wave reflection coefficient at the left boundary and |7)* =
I (LY, A0) for the fast wave transmission coefficient.

3.1. Characteristics of Parasitic Coupling

To illustrate the effect of the polluting electrostatic
modes, we consider a case in which the typical features can
be clearly seen. The example comes from a simulation of ion
cyclotron frequency minority ion heating in tokamak
geometry, We take a deuterium minority in tritium with a
concentration np /i, of 50%. Here, n, denotes the electron
density and np is the deuteron density. The rest of the
parameters are shown in Table 1. The geometry for this case
has been chosen so that within the slab there exist two
different resonances. The cyclotron resonance layer of
deuterium is located at about 10 cm from the left end. Due
to the high minority concentration the fast wave is only
weakly damped there. A few centimeters from the right
boundary, there is the ion-ion hybrid resonance where
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TABLEI
Parameters for the T(D)-Example

w 1.4325x 108 5!
n, 0

n, 2

B, 30T

Ry 30m
T.=T; 5keV

n, 5% 10¥m-?
Rpin, 0.5
ny/m, 0.5

L 0.75m
Ry, 3ilm

S —n?=0. Here the fast wave undergoes mode conversion
to the ion Bernstein wave and is reflected back to the lef
while the remaining energy emanates from the right end in
the form of a transmitted fast wave energy flux. The end
points have been set so that both resonances can be con-

E.
-3 I 1 1 1 I 1
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FIG. 6. (a) E{x) calculated from Egs. (7}-(9) for the example case of
T(D}-heating. See Table I for the parameters. (b) The behaviour of E/ in
the example case.
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sidered isolated from the boundaries. At the left one, we use
the boundary condition of an incoming fast wave mode and
reflected fast and ion Bernstein modes. At the right one, the
propagating modes are a transmitted fast wave and a con-
verted ion Bernstein mode.

The behaviour of the solution is shown in Figs. 6 and 7.
Figure 6 depicts both the radial electric field E, and its
derivative E’, while Fig. 7 shows the absorption profile
resutting from the numerical solution. The total energy flux
components, i€, the kinetic and Poynting energy fluxes, are
also depicted in Fig. 7. In general, as long as the only mode
present in the solution is the magnetosonic one, the radial
field should be adiabatically coupled to the poloidal one,
E,, and thus exhibit a similar wavelength. In regions where
an ion Bernstein mode exists due to either mode conversion,
as on the right-hand side of the ion—ion hybrid resonance at
xcfen = 0.64 m, or due to the wave mixing, it can be detected

10

a)

-5 L
-10 | | | 1 | I I |
0.1 02 03 04 05 06 07
zefw
100

1 1
61 02 03 ¢4 05 06 07

—-100 | | 1 1 1

Tefw

FIG. 7. (a) The absorption profile as calculated from the numerical
energy flux for the case of Fig. 6. {b) The encrgy flux components: the
kinetic (solid curve) and the Poynting fluxes (dotted) as a function of xcfw
in the case of Fig. 7a.
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visuaily even at low levels by the strong fluctuations in E’,.
The indication of parasitic electrostatic waves can be found
clearly everywhere in the left end of the slab, where
xefewr < 0.43 m. At xc/er=0.43 m, ¢ has a zero and the IBW,
according to the dispersion given by the wave equations,
becomes evanescent on the right-hand side of it [13]. The
deleterious effects from the parasitic modes can be detected
from the absorption profile (Fig, 7a). We find a region of
negative absorption where the total energy flux increases as
a function of x. Some fluctuations in the energy flux can be
secen at the zero of o, at which the parasitic ES mode is
reflected back towards the cyclotron layer where it is
created.

The theoretical predictions of the previpus section, the
parasitic coupling, and procedures for aveiding it can be
compared more easily by excluding the zero of ¢ and study-
ing a case with a separated cyclotron layer. In this way, one
can check how the local dispersion of the electrostatic mode

250

a)

-250 ! :

01 02
Tcfw

TABLE II

Parameters for Left Boundary for the Case Shown in Fig. 8a

Inc. fast wave Qutg. fast wave Outg. slow Outg. IBW
ny 49.3 —493 —2938i 552
EJE, 0.95i 0.95¢ 0.83i —0.055i
.E, 1 0.005 — 0.006i 16-° 0.139—0.261
Energy flux 45.6 Ix 1073 0 —3.77
E =114-0271 E =-0008+093 E =1444128i
¢ = —0.066 8=0123 ¢ =—0123

Note. See Egs. (31} and (32).

affects the creation of the polluting solution while still hav-
ing the coupling between both components of the solution,
E, and E, in the equations. Note that the zero of ¢ can be
studied in a simiiar fashion. In the latter case, it is found
that, although the mode created does lead to some numeri-

230
200

200

250 1 1
0.1 02
refw

FIG. 8. (a) E/ calculated from Egs. (7)(9) around the separated cyclotron resonance layer. Other parameters as in Table I and Figs. 6 and 7, except
for the slab length which is 0.25 m { R, = 3.1 m): solid curve, Re[ £, J; dotted curve, Im[E%]. (b) As in Fig. 8a, but the imaginary paris of o, 5, and
3 are set to zero. (c) As in Fig. 8a, but with —4§, o’ set equal to o. (d) As in Fig. 8¢, but, in addition, with the imaginary parts of §, ¢', and & set to zero.

5817114717
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cal trouble at the vicinity of the zero, it has no real conse-
quences on the solution, in terms of energy conservation.
Figures 8a to 8d show E for a representative high con-
centration T(D}-case with the isolated cyclotron layer. We
have chosen the location of the left boundary so that the
cyclotron damping is very weak there. The right boundary
has been set similarly but the zero of Re[a] is left out. Four
example calculations are depicted: one with the normal
behaviour of g, ¢’, and é and showing some 8% of excess
energy creation; one where the imaginary parts of g, o', and
J are set to zero; one in which ¢’ and — 4 are set equal to a;
and the last one, in which ¢’ and —dJ are set equal to ¢ and
their imaginary parts are neglected. We provide in Table 11
the parameters for the boundary conditions at the lgft
boundary to illustrate the result of Fig. 8a. To compare with
the mode decomposition, one may take the parallel eiectric
field as zero. From the various cases in Figs, 8a-8d one can
see how these steps change the solution in the sense that
energy conservation is improved and the amplitude of the
pollution is greatly reduced. These show how, in accordance
with the theoretical analysis in Section 2, the negative
absorption can be simply avoided by setting the finite Lar-
mor radius terms which originate from n = 1 terms (propor-
tional to ¢, and 4, ) to zero in the anti-Hermitian part of the
dielectric tensor. A similar effect can be obtained by setting
¢’ and —dJ equal to ¢, which causes a comparable reduction
in wave mixing. This is expected because the negative eigen-
value of the fast wave mode no longer exists with such a
selection. The remaining wave mixing which can be clearly
seen in Figs. 8b and 8¢ obviously originates from the steep
gradients of g, o', and & around the resonances as explained

1.0
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Iipw
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0.0 | i 1 !
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FIG. 9. The sum ({5} of the reflected and transmitted IBW energy
fluxes scaled with that of the incoming FW energy flux as a function of the
location of the left end of the slab. We keep the right end at the same loca-
tion and change the distance L between the left end and the resonance.
Otherwise, we have the same parameters as in Fig. 8a.
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in Section 2. Figure 8d shows that the simultaneous sym-
metrization and real-valuedness of these terms has a benefi-
cial effect in suppressing the wave mixing. In fact, a nearly
complete suppression is found. This cannot be explained by
the simplified analyses of Section 2. A more complete study,
including both Egs. (7) and (8) is needed to give a quan-
titative explanation. The absorption profiles corresponding
to Figs. 8a and 8d can be simulated qualitatively in the
WEKB-limit by calculating the local absorption from two
distinct FW and IBW modes integrated backwards from the
left boundary, which shows, e.g., that the strong wave mixing
encountered in the example of Fig. 8a can be connected with
the wrong sign of the imaginary part of the IBW wave root.

0.10
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Lipw
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0.00 L 1 L
iR} 0.2 0.3 0.4 0.5
np / n
10 g
i b)
1
Igw
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10’3 1 1 1 L 1
005 040 015 020 025 030 035
n. / n,

FIG. 10. (a) The sum of the left and right emanating IBW energy
fluxes scaled with the incoming fast wave energy flux as a function of
minority concentration (np /%) in a T(D)-case with parameters equal to
those in Table L. (b} Pollution as defined in Fig. 10a as a function of nyy /n,
for a case with *He in deuterium. Heating frequency e =191 10 1/s
corresponding to the *He cyclotron resonance at Ry=3m for By=3T.
The electron density and plasma temperature are as in the T(D)-case;
n,=2,
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Although the examples shown in Figs. 6-8 are a clear
indication of a high amplitude polluting mode, it should be
noted that it need not be so in the general case. The creation
of the polluting mode follows from the anomalous, unphysi-
cal dispersion located around the zero or singularity of the
real part of ¢ and can thus be reduced by affecting the local
behaviour of ¢ by simply changing the parameters for the
calculation. We next discuss the dependence of the wave
mixing on the parameters with the geometry of an isolated
cyclotron resonance, as in Fig. 8. Note that with the
modifications discussed in the context of that figure, the
polluting conversion can be reduced to very low levels in the
following exampies.

How the wave mixing depends on thelocation ofthe bound-
aries is shown in Fig. 9, where the ratio of the energy flux
of the parasitic mode to that of the incident magnetosonic
mode is shown as a function of the distance d between the
left end of the slab and the cyclotron resonance. The other
parameters are kept unchanged with respect to those in
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FIG. 11. {a) The wave mixing as a function of plasma density for the
T(D)-case. The parameters are equal to those in Table 1. {b) The wave mixing
as a function of the density in the D(*He)-case. The parameters are given
in Fig. 10b; sy /n =03,
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Fig. 8a. For d increasing from 10 to 15 cm, the left-going
parasitic mode shows an oscillatory growth with the small
scale oscillations having a wavelength of the ion Bernstein
mode. If d is further increased, the effect of the boundary
conditions on the parasitic coupling becomes more com-
plicated as the phase of the fast wave begins to play a role
at large enough d. The oscillation is in accordance with the
analysis in Section 2, where we found the parasitic mode
excitation to be strongly dependent on 4.

The minority concentration, ion composition, and den-
sity all have an effect on the strength of the conversion that
leads to wave mixing. This is demonstrated in Figs. 10 to 12,
where we show the relative wave mixing in terms of IBW
energy flux creation as a function of minority density,
plasma density, and parallel refractive index #n_ for the T(D)
heating scheme considered earlier and for the case with
helium-3 in deuterium (D(’He)). The general trends are
clear: by increasing the concentration of the resonant
minority the peoliution becomes worse because the ratio
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FIG. 12. (a} The wave mixing as a function of n, for the T{D)-case.
The parameters are equal to those in Table 1. {b) The wave mixing as a
function of n, in the D{®He)}-case. The parameters are given in Fig. 10b;
n’H:f'nc=0'3-
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between |E_|and |E, | and the imaginary part of ¢ increase
with the minority density which in its turn increases the
negative absorption. Also, the spatial behaviour of the real
part of ¢ changes. A similar effect can be seen from Fig. 11
as a function of plasma density. The dependence of parasitic
coupling on the parallel refractive index n_ does not display
strong features, as shown in Fig. 12, except for the fact that
the coupling seems to be maximized at low n,.

The role played by the wave mixing in a case involving
also the ion-ion hybrid resonance is more complicated due
to the FW reflection from the hybrid resonance layer. The
latter changes the behaviour and magnitude of E, at the
cyclotron resonance. Also, the reflection of the electrostatic
mode from the zero of ¢ may be of importance. However,
from Figs. 10 to 12 we make the conjecture that in the case
of D(*He) studies, in particular, and at low minority con-
centrations, the existence of wave mixing may be forgotten
in the sense that the results are still physically meaningful.

3.2. How to Aveid Unphysical Effects

To be able to use the simple second order wave cquations
(7)-(9) and to be sure that they describe correctly the wave
absorption, propagation, and scattering, special methods
are needed. On the basis of the previous results we
are guided to change the dispersion relation in the
neighborhood of the cyclotron resonances, so that the
excitation of wave mixing is reduced to a sufficiently low
level. There are several possible practical approaches to this
goal. A methed has already been shown in action in Fig,. 8,
which demonstrated how by meoedifying the finite Larmor
radius corrections o, o', and é the amplitude of the poltuting
mode can be reduced. We note that this kind of choice has
been used by Brambilla [20] in analyzing the antenna
coupling for ion Bernstein wave heating. Similarly, one
could omit the fundamental contributions completely,
which results in equations of the form used by Colestock
and Kashuba [ 21]. This would, however, affect the physics
of mode conversion at the ion—ion hybrid resonance.

One question that must be asked is how the absorption of
the fast magnetosonic wave is perturbed at the cyclotron
layer if one changes the imaginary part of the thermal
corrections and perhaps also the real part, too. The
magnitude of the change can be estimated from Eq. {30)
qualitatively by comparing the absorption due to Im § and
Im D to that resulting from the thermal corrections o, 4, and
o'. Thus we obtain, e.g., the ratio

Im[o] |EL/Im{ST |E.I* ~ k272

min ? (34)
where k,is the fast wavenumber at the resonance and rp,;, 1s
the minority Larmor radius. For the fast wave, this ratio is
typically small. Hence, by setting the imaginary part of o to
zero the magnitude of the fast wave transmission over the

resonance is not affected strongly. A similar conclusion can
be drawn about the damping of the fast and the ion
Bernstein modes in the vicinity of the hybrid resonance. To
avoid altering the transit time damping or the second har-
monic absorption and to avoid changing the IBW disper-
sion relation, we propose setting Im 4, =0 in ¢, 4, and ¢’
and the definitiond=4,—d,and ¢’ =24+ 0, — 0, s0asto
eliminate the parasitic coupling.

Recently, Chow er al. [13] have studied the dispersion
relation around the zero of Re[o] between the cyclotron
resonance and the ion—ion hybrid resonance in the case of
D(*He) minority heating. They aiso note the spurious short
wavelength mode appearing on the low field side of this zero
and present a clever modification to ¢ to correct the disper-
sion. An analogous method could possibly be found to each
particular application in our case, too, but it would make a
general purpose code rather complicated.

Table III compares the energy fluxes of the outgoing
waves for the case of T(D)-heating including the ion-ion
hybrid resonance (see again TableI for parameters) for
various methods of suppressing wave mixing discussed earlier
in the case of an isolated cyclotron layer on the basis of
Fig. 8. We have defined A1 = | Q dx for the total absorption.
Of the results, one can see how the wave mixing, in general,
has a very small effect on the mode-converted IBW at the
right end and on the transmitted fast wave. This is due to the
fact that the resonance and mode conversion layers are
separated from each other by the second zero of Re[a]. The
IBW is evanescent between this zero and the hybrid
resonance. In all cases, the applied changes have a reducing
effect on the wave mixing. In this particular example the addi-
tional gain from setting Im[4,] to zero, together with the
symmetrization, is quite small, in which context one should,
however, remember the fairly large differences seen in Fig. 8.
Note that it is necessary to apply the changes to all of g, ¢,
and & and not only to the first of these, as one couid expect
from the single equation analysis of Section 2. In 1D global
codes, it has been popular [3, 14] to add a phenomenologi-
cal damping term ip to the first coefficient of Eq. (7). The
goal of artificial damping is in such cases to take into
account damping processes not included or to avoid the free

TABLE 111

Reflected, Converted and Transmitted Mode Energy Fluxes
Scaled with the Incident Fast Wave (FW) Energy Flux with
Different Meodifications to the Kinetic Corrections

refl. FW refl. IBW transm. FW conv. [BW A

No modifications 0886 0318 0.044 0.041 —{0.289
Real o, o', 8 0.877  0.0005 0.044 0.041 0.038
o'=—d+0 0908 8x10°® 0.045 0.043 0.004
a=g'=-8«Re[g] 0912 5x107* 0.043 0.040 0.005

Noare. See Table I for the parameters.
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propagation of the ion Bernstein modes that are created
through mode conversion at the ion—ion hybrid resonance.
In a real situation such waves can be damped by
mechanisms that are not present in a slab model such as an
upshift of the k|, which increases absorption or stochastic
damping. According to our analysis, the inclusion of an
ip-type term reduces the pollution, too, provided that the
magnitude and the profile of g are properly chosen.
However, this method, as well as the others described
above, does not eliminate the pollution completely and the
modifications in the absorption profile are inevitable,

4. CONCLUSIONS

The appearance of unwanted phenomena in the solution
of the plasma wave propagation has usually been attributed
to the failure of the specific numerical approach used. In this
paper we have shown that there exists another reason for
the emergence of pollution, understood in this paper in the
generalized sense of mixing the original or expected solution
with other modes of any origin. Here, the origin lies in the
breakdown of the physical assumptions used for the deriva-
tion of the plasma response in the wave equations. Through
the mechanism of the gradient-driven mode conversion,
enhanced by negative absorption, the original mode couples
to the short wavelength mode allowed by the wave equa-
tions, which in the examples studied here leads to the
generation of poliuting ion Bernstein waves.

The strength of the generation of poliution depends on
the plasma composition. The critical parameters are the
relative concentration of the resonant minority tons and the
density. They determine the conversion both by setting the
magnitude of the imaginary parts of the important resonant
terms in the dielectric tensor elements at the cyclotron layer
and by affecting the behaviour of the real part in the same
way. The value of the parallel refractive index n_, on the
" other hand, has an effect through the fact that at high values
of n. the zeros of Re[a] cease to exist and through the
{E |/|E_| ratio.

We have presented a specific method to change the wave
equations so as to reach a correct description of the absorp-
tion of the fast magnetosonic wave and of the mode conver-
sion process occurring at the ion-ion hybrid resonance,
where the FLR expansion is valid. Applied to an example
they show that the strength of the polluting mode can be
reduced to a satisfactory degree. Similarly, they point out
that in global wave codes the problem of wave mixing might
remain at a relatively low level, given an extra damping
mechanism for the ion Bernstein wave that is similar to
those applied in some of the existing codes. We would,
however, like to stress that our approach seems to be easier
to apply in practice, even in global codes, The removal of

the parasitic modes is in any case a goal which ought to be
reached, in order to make this problem solvable within the
differential equation formulation.
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